

MBK International Services Inc.

Sugar Land, Texas, USA

Telephone: +1 (281) 798-3882 Email: infor@mbkinternational.com Website: www.mbkinternational.com

Comparative Analysis: MBK Biochar vs. Direct Air Capture (DAC) Evidence-Based

Evaluation with Strategic Insights and Independent Sources

Overview: Two Approaches to Carbon Removal

This section compares the fundamental mechanisms and storage media of MBK Biochar and Direct Air Capture (DAC), laying a foundation for a more in-depth technical evaluation.

Permanence refers to the duration that carbon dioxide (CO₂) remains sequestered from the atmosphere, a key factor in the credibility and long-term climate value of any carbon credit. Solutions with a permanence exceeding 100 years are regarded as highly durable and eligible for premium credit classification.

- **DAC** (**Direct Air Capture**): Mechanical systems that chemically remove CO₂ from the air, which is typically stored underground.
- **Biochar (MBK):** Pyrolyzed biomass that stabilizes carbon in solid form, applied to soils to store CO₂ over the long term while regenerating land.

Parameter	MBK Biochar	Direct Air Capture (DAC)
Mechanism	Thermal conversion of certified biomass into stable carbon; applied to soil	Captures CO ₂ directly from ambient air using chemical sorbents; injects into geological reservoirs
Storage Medium	Soil (as high-fixed-carbon biochar)	Deep geological formations (e.g., saline aquifers)
Storage Duration	>1,000 years (in anaerobic, stable soils)	>1,000 years (with monitoring of site integrity)
Scientific Foundation	Verified by Schmidt et al. (2021), Lehmann et al. (2015), Biochar Journal	Backed by IPCC (2022), Climeworks technical data, Realmonte et al. (2019)

Technical Performance Matrix

This matrix provides a side-by-side comparison of operational, environmental, and financial metrics, grounding each factor in established research and carbon credit market data.

Criteria	MBK Biochar	DAC	Source
Carbon Stability	>85% fixed carbon (MBK minimum); thermally stable aromatic structures	Sorbent-captured CO ₂ ; risk of leakage over geological time	Lehmann et al. 2015; IPCC 2022
IMRV	IBM Blockchain (batch ID, GPS-tagged); verified by SCS, DNV	Proprietary MRV; internal monitoring, and limited transparency	Puro.Earth; Frontier disclosures
	Moderate; waste heat-to- energy offsets electrical needs	ll('() ₂);	Realmonte et al. 2019; Climeworks
Co-Benefits	Enhances soil fertility, water retention, and yield; supports ESG goals	No ecosystem or agricultural benefit	Biochar Journal, UN FAO
	~\$850–\$1,000/ton (FPA); scalable in agriculture	\$600–\$1,200+/ton; infrastructure intensive	CarbonPlan, Frontier, IPCC
_ v	Modular and regional deployment (soil amendment)	Centralized facilities; multi- year construction lead	NASEM, 2023
Social Impact	Creates rural jobs, supports local economies and food systems	Limited to tech jobs in select locations	Global Biochar Initiative

MBK vs. DAC: Evaluation Framework

This evaluative framework employs guiding questions to assess functional and strategic priorities for scalable carbon removal.

Factor	Evaluative Question	MBK Biochar	DAC
Permanence		✓ Proven in soil context	✓ Theoretical, with site risks
IIH CACVETAM KANATIT	Supports broader environmental outcomes?	✓ Regenerates soil, biodiversity	None beyond CO ₂ capture
Energy Source Alignment	Can it be energy independent or positive?	✓ Waste heat energy reuse	X High energy draw
Verification Integrity	Transparent, multi-layered MRV?	✓ 3rd-party + blockchain	Limited public auditability

Community Uplift	Supports regional or rural development?	✓ Climate-smart	X Limited local benefit
	rank	agric arear c	CONCIN

Scientific and Institutional References

This section presents peer-reviewed studies and institutional reports that validate the metrics and assertions made throughout the comparative analysis.

- Lehmann, J. & Joseph, S. (2015). Biochar for Environmental Management, Routledge.
- Schmidt, H.P. et al. (2021). *Biochar in Agriculture: Summary of Field Trials*. Biochar Journal.
- Realmonte, G. et al. (2019). An inter-model assessment of DAC. Joule.
- IPCC AR6 WGIII, Ch. 12 (2022) Carbon Dioxide Removal.
- NASEM (2023). Carbon Dioxide Removal Technologies. National Academies.
- Puro.Earth Carbon Removal Marketplace Guidelines.
- Climeworks Technical White Paper (2023).

Strategic Conclusion

The conclusion synthesizes technical, social, and market insights, positioning MBK Biochar as a next-generation carbon removal solution that bridges scientific integrity with regenerative action.

MBK Biochar offers a technically superior, economically scalable, and socially integrated pathway to durable carbon removal. Unlike DAC, which relies on centralized, energy-intensive infrastructure and provides minimal systemic benefit, MBK's approach:

- Provides verified 1,000+ year permanence through high-temperature, low-oxygen pyrolysis
- Creates agricultural and ecological co-benefits aligned with SDGs 2, 6, 13, and 15
- Scales quickly and affordably using distributed agro-based supply chains
- Is backed by an MRV-ready, blockchain-traceable framework for buyers and regulators

As markets evolve, MBK Biochar establishes a new standard for high-integrity, multi-benefit carbon removal that is verifiable, regenerative, and human-centered.